Exercise 3.3 Solutions

This page contains the NCERT mathematics class 12 chapter Matrices Exercise 3.3 Solutions. You can find the numerical questions solutions for the chapter 3/Exercise 3.3 of NCERT class 12 mathematics in this page. So is the case if you are looking for NCERT class 12 Maths related topic Matrices Exercise 3.3 solutions. This page contains Exercise 3.3 solutions. If you’re looking for summary of the chapter or other exercise solutions, they’re available at
Exercise 3.3 Solutions
1. Find the transpose of each of the following matrices:
(i) {\left[\begin{array}{c} 5 \\[5pt] \dfrac{1}{2} \\[10pt] -1 \end{array}\right]} (ii) {\left[\begin{array}{cc} 1 & -1 \\[5pt] 2 & 3 \end{array}\right]} (iii) {\left[\begin{array}{ccc} -1 & 5 & 6 \\[5pt] \sqrt{3} & 5 & 6 \\[5pt] 2 & 3 & -1 \end{array}\right]}
(i) To find the transpose of {\left[\begin{array}{c} 5 \\[5pt] \dfrac{1}{2} \\[10pt] -1 \end{array}\right]}
Transpose of {\left[\begin{array}{c} 5 \\[5pt] \dfrac{1}{2} \\[10pt] -1 \end{array}\right]} = {\left[\begin{array}{ccc} 5 & \dfrac{1}{2} & -1 \end{array}\right]}
(ii) To find the transpose of {\left[\begin{array}{cc} 1 & -1 \\[5pt] 2 & 3 \end{array}\right]}
Transpose of {\left[\begin{array}{cc} 1 & -1 \\[5pt] 2 & 3 \end{array}\right]} = {\left[\begin{array}{ccc} 1 & 2 \\[5pt] -1 & 3 \end{array}\right]}
(iii) To find the transpose of {\left[\begin{array}{ccc} -1 & 5 & 6 \\[5pt] \sqrt{3} & 5 & 6 \\[5pt] 2 & 3 & -1 \end{array}\right]}
Transpose of {\left[\begin{array}{ccc} -1 & 5 & 6 \\[5pt] \sqrt{3} & 5 & 6 \\[5pt] 2 & 3 & -1 \end{array}\right]} = {\left[\begin{array}{ccc} -1 & \sqrt{3} & 2 \\[5pt] 5 & 5 & 3 \\[5pt] 6 & 6 & -1 \end{array}\right]}

2. If {\text{A} = \left[\begin{array}{cc} -1 & 2 & 3 \\[5pt] 5 & 7 & 9 \\[5pt] -2 & 1 & 1 \end{array}\right]} and {\text{B} = \left[\begin{array}{cc} -4 & 1 & -5 \\[5pt] 1 & 2 & 0 \\[5pt] 1 & 3 & 1 \end{array}\right],} then verify that
(i) (A + B) = A + B,
(ii) (A – B) = A + B

Given that {\text{A} = \left[\begin{array}{cc} -1 & 2 & 3 \\[5pt] 5 & 7 & 9 \\[5pt] -2 & 1 & 1 \end{array}\right]} and {\text{B} = \left[\begin{array}{cc} -4 & 1 & -5 \\[5pt] 1 & 2 & 0 \\[5pt] 1 & 3 & 1 \end{array}\right].} So,
A
{= \left[\begin{array}{cc} -1 & 5 & -2 \\[5pt] 2 & 7 & 1 \\[5pt] 3 & 9 & 1 \end{array}\right]}
B
{= \left[\begin{array}{cc} -4 & 1 & 1 \\[5pt] 1 & 2 & 3 \\[5pt] -5 & 0 & 1 \end{array}\right]}
(i) To verify that (A + B) = A + B
A + B
{= \left[\begin{array}{cc} -1 & 2 & 3 \\[5pt] 5 & 7 & 9 \\[5pt] -2 & 1 & 1 \end{array}\right] + \left[\begin{array}{cc} -4 & 1 & -5 \\[5pt] 1 & 2 & 0 \\[5pt] 1 & 3 & 1 \end{array}\right]}
{= \left[\begin{array}{cc} (-1) + (-4) & 2 + 1 & 3 + (-5) \\[5pt] 5 + 1 & 7 + 2 & 9 + 0 \\[5pt] -2 + 1 & 1 + 3 & 1 + 1 \end{array}\right]}
{= \left[\begin{array}{cc} -5 & 3 & -2 \\[5pt] 6 & 9 & 9 \\[5pt] -1 & 4 & 2 \end{array}\right]}
Now,
(A + B)
{= \left[\begin{array}{cc} -5 & 6 & -1 \\[5pt] 3 & 9 & 4 \\[5pt] -2 & 9 & 2 \end{array}\right]}
A + B
{= \left[\begin{array}{cc} -1 & 5 & -2 \\[5pt] 2 & 7 & 1 \\[5pt] 3 & 9 & 1 \end{array}\right] + \left[\begin{array}{cc} -4 & 1 & 1 \\[5pt] 1 & 2 & 3 \\[5pt] -5 & 0 & 1 \end{array}\right]}
{= \left[\begin{array}{cc} (-1) + (-4) & 5 + 1 & -2 + 1 \\[5pt] 2 + 1 & 7 + 2 & 1 + 3 \\[5pt] 3 + (-5) & 9 + 0 & 1 + 1 \end{array}\right]}
{= \left[\begin{array}{cc} -5 & 6 & -1 \\[5pt] 3 & 9 & 4 \\[5pt] -2 & 9 & 2 \end{array}\right]}
(A + B) = A + B
(ii) To verify that (A – B) = A – B
A – B
{= \left[\begin{array}{cc} -1 & 2 & 3 \\[5pt] 5 & 7 & 9 \\[5pt] -2 & 1 & 1 \end{array}\right] - \left[\begin{array}{cc} -4 & 1 & -5 \\[5pt] 1 & 2 & 0 \\[5pt] 1 & 3 & 1 \end{array}\right]}
{= \left[\begin{array}{cc} (-1) - (-4) & 2 - 1 & 3 - (-5) \\[5pt] 5 - 1 & 7 - 2 & 9 - 0 \\[5pt] -2 - 1 & 1 - 3 & 1 - 1 \end{array}\right]}
{= \left[\begin{array}{cc} -1 + 4 & 2 - 1 & 3 + 5 \\[5pt] 5 - 1 & 7 - 2 & 9 - 0 \\[5pt] -2 - 1 & 1 - 3 & 1 - 1 \end{array}\right]}
{= \left[\begin{array}{cc} 3 & 1 & 8 \\[5pt] 4 & 5 & 9 \\[5pt] -3 & -2 & 0 \end{array}\right]}
Now,
(A – B)
{= \left[\begin{array}{cc} 3 & 4 & -3 \\[5pt] 1 & 5 & -2 \\[5pt] 8 & 9 & 0 \end{array}\right]}
A – B
{= \left[\begin{array}{cc} -1 & 5 & -2 \\[5pt] 2 & 7 & 1 \\[5pt] 3 & 9 & 1 \end{array}\right] - \left[\begin{array}{cc} -4 & 1 & 1 \\[5pt] 1 & 2 & 3 \\[5pt] -5 & 0 & 1 \end{array}\right]}
{= \left[\begin{array}{cc} (-1) - (-4) & 5 - 1 & -2 - 1 \\[5pt] 2 - 1 & 7 - 2 & 1 - 3 \\[5pt] 3 - (-5) & 9 - 0 & 1 - 1 \end{array}\right]}
{= \left[\begin{array}{cc} 3 & 4 & -3 \\[5pt] 1 & 5 & -2 \\[5pt] 8 & 9 & 1 \end{array}\right]}
(A – B) = A – B

3. If A = {\left[\begin{array}{cc} 3 & 4 \\[5pt] -1 & 2 \\[5pt] 0 & 1 \end{array}\right]} and {\text{B} = \left[\begin{array}{ccc} - 1 & 2 & 1 \\[5pt] 1 & 2 & 3 \end{array}\right],} then verify that
(i) (A + B) = A + B
(ii) (A – B) = A – B

Given that A = {\left[\begin{array}{cc} 3 & 4 \\[5pt] -1 & 2 \\[5pt] 0 & 1 \end{array}\right]}
{⇒ \text{A} = \left[\begin{array}{ccc} 3 & -1 & 0 \\[5pt] 4 & 2 & 1 \end{array}\right]}
It is also given that {\text{B} = \left[\begin{array}{ccc} -1 & 2 & 1 \\[5pt] 1 & 2 & 3 \end{array}\right]}
⇒ B = {\left[\begin{array}{cc} -1 & 1 \\[5pt] 2 & 2 \\[5pt] 1 & 3 \end{array}\right]}
(i) To verify that (A + B) = A + B
A + B
{= \left[\begin{array}{ccc} 3 & -1 & 0 \\[5pt] 4 & 2 & 1 \end{array}\right] + \left[\begin{array}{ccc} -1 & 2 & 1 \\[5pt] 1 & 2 & 3 \end{array}\right]}
{= \left[\begin{array}{ccc} 3 + (-1) & -1 + 2 & 0 + 1 \\[5pt] 4 + 1 & 2 + 2 & 1 + 3 \end{array}\right]}
{= \left[\begin{array}{ccc} 2 & 1 & 1 \\[5pt] 5 & 4 & 4 \end{array}\right]}
L.H.S.
= (A + B)
{= \left[\begin{array}{cc} 2 & 5 \\[5pt] 1 & 4 \\[5pt] 1 & 4 \end{array}\right]}
R.H.S.
= A + B
{= \left[\begin{array}{cc} 3 & 4 \\[5pt] -1 & 2 \\[5pt] 0 & 1 \end{array}\right] + \left[\begin{array}{cc} -1 & 1 \\[5pt] 2 & 2 \\[5pt] 1 & 3 \end{array}\right]}
{= \left[\begin{array}{cc} 3 + (-1) & 4 + 1 \\[5pt] -1 + 2 & 2 + 2 \\[5pt] 0 + 1 & 1 + 3 \end{array}\right]}
{= \left[\begin{array}{cc} 2 & 5 \\[5pt] 1 & 4 \\[5pt] 1 & 4 \end{array}\right]}
As L.H.S. and R.H.S. are equal
(A + B) = A + B
(ii) To verify that (A – B) = A – B
A – B
{= \left[\begin{array}{ccc} 3 & -1 & 0 \\[5pt] 4 & 2 & 1 \end{array}\right] - \left[\begin{array}{ccc} -1 & 2 & 1 \\[5pt] 1 & 2 & 3 \end{array}\right]}
{= \left[\begin{array}{ccc} 3 - (-1) & -1 - 2 & 0 - 1 \\[5pt] 4 - 1 & 2 - 2 & 1 - 3 \end{array}\right]}
{= \left[\begin{array}{ccc} 4 & -3 & -1 \\[5pt] 3 & 0 & -2 \end{array}\right]}
L.H.S.
= (A – B)
{= \left[\begin{array}{cc} 4 & 3 \\[5pt] -3 & 0 \\[5pt] -1 & -2 \end{array}\right]}
R.H.S.
= A – B
{= \left[\begin{array}{cc} 3 & 4 \\[5pt] -1 & 2 \\[5pt] 0 & 1 \end{array}\right] - \left[\begin{array}{cc} -1 & 1 \\[5pt] 2 & 2 \\[5pt] 1 & 3 \end{array}\right]}
{= \left[\begin{array}{cc} 3 - (-1) & 4 - 1 \\[5pt] -1 - 2 & 2 - 2 \\[5pt] 0 - 1 & 1 - 3 \end{array}\right]}
{= \left[\begin{array}{cc} 4 & 3 \\[5pt] -3 & 0 \\[5pt] -1 & -2 \end{array}\right]}
As L.H.S. and R.H.S. are equal
(A – B) = A – B

4. If A = {\left[\begin{array}{cc} -2 & 3 \\[5pt] 1 & 2 \end{array}\right]} and {\text{B} = \left[\begin{array}{cc} -1 & 0 \\[5pt] 1 & 2 \end{array}\right],} then find (A + 2B)
Given that A = {\left[\begin{array}{cc} -2 & 3 \\[5pt] 1 & 2 \end{array}\right]} and {\text{B} = \left[\begin{array}{cc} -1 & 0 \\[5pt] 1 & 2 \end{array}\right]}
⇒ A
= (A)
{= \left[\begin{array}{cc} -2 & 1 \\[5pt] 3 & 2 \end{array}\right]}
A + 2B
{= \left[\begin{array}{cc} -2 & 1 \\[5pt] 3 & 2 \end{array}\right] + 2\left[\begin{array}{cc} -1 & 0 \\[5pt] 1 & 2 \end{array}\right]}
{= \left[\begin{array}{cc} -2 & 1 \\[5pt] 3 & 2 \end{array}\right] + \left[\begin{array}{cc} 2 × (-1) & 2 × 0 \\[5pt] 2 × 1 & 2 × 2 \end{array}\right]}
{= \left[\begin{array}{cc} -2 & 1 \\[5pt] 3 & 2 \end{array}\right] + \left[\begin{array}{cc} -2 & 0 \\[5pt] 2 & 4 \end{array}\right]}
{= \left[\begin{array}{cc} -2 + (-2) & 1 + 0 \\[5pt] 3 + 2 & 2 + 4 \end{array}\right]}
{= \left[\begin{array}{cc} -4 & 1 \\[5pt] 5 & 6 \end{array}\right]}
So,
(A + 2B)
= {\left[\begin{array}{cc} -4 & 5 \\[5pt] 1 & 6 \end{array}\right]}

5. For the matrices A and B, verify that (AB) = BA, where (i) {\text{A} = \left[\begin{array}{c} 1 \\[5pt] -4 \\[5pt] 3 \end{array}\right], \text{B} = \left[\begin{array}{ccc} -1 & 2 & 1 \end{array}\right]} (ii) {\text{A} = \left[\begin{array}{c} 0 \\[5pt] 1 \\[5pt] 2 \end{array}\right], \text{B} = \left[\begin{array}{ccc} 1 & 5 & 7 \end{array}\right]}
(i) To verify that (AB) = BA where A = {\left[\begin{array}{c} 1 \\[5pt] -4 \\[5pt] 3 \end{array}\right]} and B = {\left[\begin{array}{ccc} -1 & 2 & 1 \end{array}\right]}
Given that A = {\left[\begin{array}{c} 1 \\[5pt] -4 \\[5pt] 3 \end{array}\right]} and B = {\left[\begin{array}{ccc} -1 & 2 & 1 \end{array}\right]}
AB
{= \left[\begin{array}{c} 1 \\[5pt] -4 \\[5pt] 3 \end{array}\right] \left[\begin{array}{ccc} -1 & 2 & 1 \end{array}\right]}
{= \left[\begin{array}{c} 1 × (-1) & 1 × 2 & 1 × 1 \\[5pt] (-4) × (-1) & -4 × 2 & -4 × 1 \\[5pt] 3 × (-1) & 3 × 2 & 3 × 1 \end{array}\right]}
{= \left[\begin{array}{c} -1 & 2 & 1 \\[5pt] 4 & -8 & -4 \\[5pt] -3 & 6 & 3 \end{array}\right]}
L.H.S.
= (AB)
{= \left[\begin{array}{ccc} -1 & 4 & -3 \\[5pt] 2 & -8 & 6 \\[5pt] 1 & -4 & 3 \end{array}\right]}
B
{= \left[\begin{array}{c} -1 \\[5pt] 2 \\[5pt] 1 \end{array}\right]}
A
{= \left[\begin{array}{c} 1 & -4 & 3 \end{array}\right]}
R.H.S.
= BA
{= \left[\begin{array}{c} -1 \\[5pt] 2 \\[5pt] 1 \end{array}\right] \left[\begin{array}{c} 1 & -4 & 3 \end{array}\right]}
{= \left[\begin{array}{ccc} -1 × 1 & (-1) × (-4) & -1 × 3 \\[5pt] 2 × 1 & 2 × (-4) & 2 × 3 \\[5pt] 1 × 1 & 1 × (-4) & 1 × 3 \end{array}\right]}
{= \left[\begin{array}{ccc} 1 & 4 & -3 \\[5pt] 2 & -8 & 6 \\[5pt] 1 & -4 & 3 \end{array}\right]}
∴ L.H.S. = R.H.S.
So, it is verified that (AB) = BA
(ii) To verify that (AB) = BA where A = {\left[\begin{array}{c} 0 \\[5pt] 1 \\[5pt] 2 \end{array}\right]} and B = {\left[\begin{array}{ccc} 1 & 5 & 7 \end{array}\right]}
Given that A = {\left[\begin{array}{c} 0 \\[5pt] 1 \\[5pt] 2 \end{array}\right]} and B = {\left[\begin{array}{ccc} 1 & 5 & 7 \end{array}\right]}
AB
{= \left[\begin{array}{c} 0 \\[5pt] 1 \\[5pt] 2 \end{array}\right] \left[\begin{array}{ccc} 1 & 5 & 7 \end{array}\right]}
{= \left[\begin{array}{c} 0 × 1 & 0 × 5 & 0 × 7 \\[5pt] 1 × 1 & 1 × 5 & 1 × 7 \\[5pt] 2 × 1 & 2 × 5 & 2 × 7 \end{array}\right]}
{= \left[\begin{array}{c} 0 & 0 & 0 \\[5pt] 1 & 5 & 7 \\[5pt] 2 & 10 & 14 \end{array}\right]}
L.H.S.
= (AB)
{= \left[\begin{array}{ccc} 0 & 1 & 2 \\[5pt] 0 & 5 & 10 \\[5pt] 0 & 7 & 14 \end{array}\right]}
B
{= \left[\begin{array}{c} 1 \\[5pt] 5 \\[5pt] 7 \end{array}\right]}
A
{= \left[\begin{array}{c} 0 & 1 & 2 \end{array}\right]}
R.H.S.
= BA
{= \left[\begin{array}{c} 1 \\[5pt] 5 \\[5pt] 7 \end{array}\right] \left[\begin{array}{c} 0 & 1 & 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 1 × 0 & 1 × 1 & 1 × 2 \\[5pt] 5 × 0 & 5 × 1 & 5 × 2 \\[5pt] 7 × 0 & 7 × 1 & 7 × 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 0 & 1 & 2 \\[5pt] 0 & 5 & 10 \\[5pt] 0 & 7 & 14 \end{array}\right]}
∴ L.H.S. = R.H.S.
So, it is verified that (AB) = BA

6. If (i) A = {\left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right],} then verify that AA = I
(ii) A = {\left[\begin{array}{cc} \sin α & \cos α \\[5pt] -\cos α & \sin α \end{array}\right],} then verify that AA = I
(i) To verify that AA = I when {\text{A} = \left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right]}
Given that
A
{= \left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} \cos α & -\sin α \\[5pt] \sin α & \cos α \end{array}\right]}
Now,
L.H.S.
= AA
{= \left[\begin{array}{cc} \cos α & -\sin α \\[5pt] \sin α & \cos α \end{array}\right] \left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right]}
{= \left[\begin{array}{cc} (\cos α) (\cos α) + (-\sin α) (-\sin α) & (\cos α) (\sin α) + (-\sin α) (\cos α) \\[5pt] (\sin α) (\cos α) + (\cos α) (-\sin α) & (\sin α) (\sin α) + (\cos α)(\cos α) \end{array}\right]}
{= \left[\begin{array}{cc} \cos^2 α + \sin^2 α & \cos α \sin α - \sin α \cos α \\[5pt] \sin α \cos α - \cos α \sin α & \sin^2 α + \cos^2 α \end{array}\right]}
{= \left[\begin{array}{cc} 1 & 0 \\[5pt] 0 & 1 \end{array}\right]}
= I
= R.H.S.
As L.H.S. = R.H.S., it is verified that AA = I
(ii) To verify that AA = I when {\text{A} = \left[\begin{array}{cc} \sin α & \cos α \\[5pt] -\cos α & \sin α \end{array}\right]}
Given that
A
{= \left[\begin{array}{cc} \sin α & \cos α \\[5pt] -\cos α & \sin α \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} \sin α & -\cos α \\[5pt] \cos α & \sin α \end{array}\right]}
Now,
L.H.S.
= AA
{= \left[\begin{array}{cc} \sin α & -\cos α \\[5pt] \cos α & \sin α \end{array}\right] \left[\begin{array}{cc} \sin α & \cos α \\[5pt] -\cos α & \sin α \end{array}\right]}
{= \left[\begin{array}{cc} (\sin α) (\sin α) + (-\cos α) (-\cos α) & (\sin α) (\cos α) + (-\cos α) (\sin α) \\[5pt] (\cos α) (\sin α) + (\sin α) (-\cos α) & (\cos α) (\cos α) + (\sin α)(\sin α) \end{array}\right]}
{= \left[\begin{array}{cc} \sin^2 α + \cos^2 α & \sin α \cos α - \cos α \sin α \\[5pt] \cos α \sin α - \sin α \cos α & \cos^2 α + \sin^2 α \end{array}\right]}
{= \left[\begin{array}{cc} 1 & 0 \\[5pt] 0 & 1 \end{array}\right]}
= I
= R.H.S.
As L.H.S. = R.H.S., it is verified that AA = I

7. (i) Show that the matrix {\text{A} = \left[\begin{array}{cc} 1 & -1 & 5 \\[5pt] -1 & 2 & 1 \\[5pt] 5 & 1 & 3 \end{array}\right]} is a symmetric matrix.
(ii) Show that the matrix {\text{A} = \left[\begin{array}{cc} 0 & 1 & -1 \\[5pt] -1 & 0 & 1 \\[5pt] 1 & -1 & 0 \end{array}\right]} is a skew symmetric matrix.
(i) To show that the matrix {\text{A} = \left[\begin{array}{cc} 1 & -1 & 5 \\[5pt] -1 & 2 & 1 \\[5pt] 5 & 1 & 3 \end{array}\right]} is a symmetric matrix.
Given that
A
{= \left[\begin{array}{cc} 1 & -1 & 5 \\[5pt] -1 & 2 & 1 \\[5pt] 5 & 1 & 3 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 1 & -1 & 5 \\[5pt] -1 & 2 & 1 \\[5pt] 5 & 1 & 3 \end{array}\right]}
= A
∴ As A = A, A is a symmetric matrix.
(ii) To show that the matrix {\text{A} = \left[\begin{array}{cc} 0 & 1 & -1 \\[5pt] -1 & 0 & 1 \\[5pt] 1 & -1 & 0 \end{array}\right]} is a skew symmetric matrix.
Given that
A
{= \left[\begin{array}{cc} 0 & 1 & -1 \\[5pt] -1 & 0 & 1 \\[5pt] 1 & -1 & 0 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 0 & -1 & 1 \\[5pt] 1 & 0 & -1 \\[5pt] -1 & 1 & 0 \end{array}\right]}
{= -\left[\begin{array}{cc} 0 & 1 & -1 \\[5pt] -1 & 0 & 1 \\[5pt] 1 & -1 & 0 \end{array}\right]}
= -A
∴ As A = -A, A is a skew symmetric matrix.

8. For the matrix {\text{A} = \left[\begin{array}{cc} 1 & 5 \\[5pt] 6 & 7 \end{array}\right],} verify that
(i)
(A + A) is a symmetric matrix
(ii)
(A – A) is a skew symmetric matrix
Given that
A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] 6 & 7 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 1 & 6 \\[5pt] 5 & 7 \end{array}\right]}
(i) To verify that (A + A) is a symmetric matrix.
We have,
A + A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] 6 & 7 \end{array}\right] + \left[\begin{array}{cc} 1 & 6 \\[5pt] 5 & 7 \end{array}\right]}
{= \left[\begin{array}{cc} 1 + 1 & 5 + 6 \\[5pt] 6 + 5 & 7 + 7 \end{array}\right]}
{= \left[\begin{array}{cc} 2 & 11 \\[5pt] 11 & 14 \end{array}\right]}
So,
(A + A)
{= \left[\begin{array}{cc} 2 & 11 \\[5pt] 11 & 14 \end{array}\right]}
= A + A
∴ As (A + A) = (A + A), (A + A) is a symmetric matrix.
(ii) To verify that (A – A) is a skew symmetric matrix.
We have,
A – A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] 6 & 7 \end{array}\right] - \left[\begin{array}{cc} 1 & 6 \\[5pt] 5 & 7 \end{array}\right]}
{= \left[\begin{array}{cc} 1 - 1 & 5 - 6 \\[5pt] 6 - 5 & 7 - 7 \end{array}\right]}
{= \left[\begin{array}{cc} 0 & -1 \\[5pt] 1 & 0 \end{array}\right]}
So,
(A – A)
{= \left[\begin{array}{cc} 0 & 1 \\[5pt] -1 & 0 \end{array}\right]}
{= -\left[\begin{array}{cc} 0 & -1 \\[5pt] 1 & 0 \end{array}\right]}
= -(A – A)
∴ As (A – A) = -(A – A), (A – A) is a skew symmetric matrix.

9. Find \dfrac{1}{2}(A + A) and \dfrac{1}{2}(A – A), when {\text{A} = \left[\begin{array}{cc} 0 & a & b \\[5pt] -a & 0 & c \\[5pt] -b & -c & 0 \end{array}\right]}
Given that
A
{= \left[\begin{array}{cc} 0 & a & b \\[5pt] -a & 0 & c \\[5pt] -b & -c & 0 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 0 & -a & -b \\[5pt] a & 0 & -c \\[5pt] b & c & 0 \end{array}\right]}
{= -\left[\begin{array}{cc} 0 & a & b \\[5pt] -a & 0 & c \\[5pt] -b & -c & 0 \end{array}\right]}
= -A
So,
\dfrac{1}{2}(A + A)
= \dfrac{1}{2}(A + (-A))
= \dfrac{1}{2}(A-A)
= \dfrac{1}{2}O
= O
\dfrac{1}{2}(A – A)
= \dfrac{1}{2}(A + A)
= \dfrac{1}{2}(2A)
= A

10. Express the following matrices as the sum of a symetric and a skew symmetric matrix:
(i) {\left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & -1 \end{array}\right]}
(ii) {\left[\begin{array}{ccc} 6 & -2 & 2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right]}
(iii) {\left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right]}
(iv) {\left[\begin{array}{cc} 1 & 5 \\[5pt] -1 & 2 \end{array}\right]}
To express each of the given matrices as the sum of a symmetric and a skew symmetric matrices, we use the following theorem.
Theorem: Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.
So, any square matrix A can be represented as
A = \dfrac12(A + A) + \dfrac12(A – A)
We also know that (A + A) is a symmetric matrix and (A – A) is a skew symmetric matrix. We also know that, for any given matrix A, (kA) = kA, it follows that \dfrac12(A + A) is symmetric matrix and \dfrac12(A – A) is a skew symmetric matrix. Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix. We use this theorem to express the given matrices as the sum of a symmetric and a skew symmetric matrix.
(i) To express {\left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & -1 \end{array}\right]} as the sum of a symmetric and a skew symmetric matrix:
Let the given metrix be A
So,
A
{= \left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & -1 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 3 & 1 \\[5pt] 5 & -1 \end{array}\right]}
Now,
A + A
{= \left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & -1 \end{array}\right] + \left[\begin{array}{cc} 3 & 1 \\[5pt] 5 & -1 \end{array}\right]}
{= \left[\begin{array}{cc} 3 + 3 & 5 + 1 \\[5pt] 1 + 5 & -1 + (-1) \end{array}\right]}
{= \left[\begin{array}{cc} 6 & 6 \\[5pt] 6 & -2 \end{array}\right]}
\dfrac12(A + A)
{= \dfrac12 × \left[\begin{array}{cc} 6 & 6 \\[5pt] 6 & -2 \end{array}\right]}
{= \left[\begin{array}{cc} \dfrac12 × 6 & \dfrac12 × 6 \\[10pt] \dfrac12 × 6 & \dfrac12 × -2 \end{array}\right]}
{= \left[\begin{array}{cc} 3 & 3 \\[5pt] 3 & -1 \end{array}\right]}
Similarly,
A – A
{= \left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & -1 \end{array}\right] - \left[\begin{array}{cc} 3 & 1 \\[5pt] 5 & -1 \end{array}\right]}
{= \left[\begin{array}{cc} 3 - 3 & 5 - 1 \\[5pt] 1 - 5 & -1 - (-1) \end{array}\right]}
{= \left[\begin{array}{cc} 0 & 4 \\[5pt] -4 & 0 \end{array}\right]}
\dfrac12(A – A)
{= \dfrac12 × \left[\begin{array}{cc} 0 & 4 \\[5pt] -4 & 0 \end{array}\right]}
{= \left[\begin{array}{cc} \dfrac12 × 0 & \dfrac12 × 4 \\[10pt] \dfrac12 × (-4) & \dfrac12 × 0 \end{array}\right]}
{= \left[\begin{array}{cc} 0 & 2 \\[5pt] -2 & 0 \end{array}\right]}
Thus the given matrix A can be represented as the sum of a symmetric and skew symmetric matrices as
A = \dfrac12(A + A) + \dfrac12(A – A)
{\left[\begin{array}{cc} 3 & 5 \\[5pt] 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 3 & 3 \\[5pt] 3 & -1 \end{array}\right] + \left[\begin{array}{cc} 0 & 2 \\[5pt] -2 & 0 \end{array}\right]}
(ii) To express {\left[\begin{array}{ccc} 6 & -2 & -2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right]} as the sum of a symmetric and a skew symmetric matrix:
Let the given metrix be A
So,
A
{= \left[\begin{array}{ccc} 6 & -2 & -2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 6 & -2 & -2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right]}
= A
Now,
A + A
= A + A
= 2A
\dfrac12(A + A)
= \dfrac12 × 2A
= A
Similarly,
A – A
= A – A
= O
\dfrac12(A – A)
= \dfrac12 × O
= O
Thus the given matrix A can be represented as the sum of a symmetric and skew symmetric matrices as
A = \dfrac12(A + A) + \dfrac12(A – A)
{\left[\begin{array}{ccc} 6 & -2 & -2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right] = \left[\begin{array}{ccc} 6 & -2 & -2 \\[5pt] -2 & 3 & -1 \\[5pt] 2 & -1 & 3 \end{array}\right] + \left[\begin{array}{ccc} 0 & 0 & 0 \\[5pt] 0 & 0 & 0 \\[5pt] 0 & 0 & 0 \end{array}\right]}
(iii) To express {\left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right]} as the sum of a symmetric and a skew symmetric matrix:
Let the given metrix be A
So,
A
{= \left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right]}
⇒ A
{= \left[\begin{array}{ccc} 3 & -2 & -4 \\[5pt] 3 & -2 & -5 \\[5pt] -1 & 1 & 2 \end{array}\right]}
Now,
A + A
{= \left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right] + \left[\begin{array}{ccc} 3 & -2 & -4 \\[5pt] 3 & -2 & -5 \\[5pt] -1 & 1 & 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 3 + 3 & 3 + (-2) & -1 + (-4) \\[5pt] -2 + 3 & -2 + (-2) & 1 + (-5) \\[5pt] -4 + (-1) & -5 + 1 & 2 + 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 6 & 1 & -5 \\[5pt] 1 & -4 & -4 \\[5pt] -5 & -4 & 4 \end{array}\right]}
\dfrac12(A + A)
{= \dfrac12 × \left[\begin{array}{cc} 6 & 1 & -5 \\[5pt] 1 & -4 & -4 \\[5pt] -5 & -4 & 4 \end{array}\right]}
{= \left[\begin{array}{ccc} \dfrac12 × 6 & \dfrac12 × 1 & \dfrac12 × -5 \\[10pt] \dfrac12 × 1 & \dfrac12 × -4 & \dfrac12 × -4 \\[10pt] \dfrac12 × -5 & \dfrac12 × -4 & \dfrac12 × 4 \end{array}\right]}
{= \left[\begin{array}{ccc} 3 & \dfrac12 & \dfrac{-5}{2} \\[10pt] \dfrac12 & -2 & -2 \\[10ptx] \dfrac{-5}{2} & -2 & 2 \end{array}\right]}
Similarly,
A – A
{= \left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right] - \left[\begin{array}{ccc} 3 & -2 & -4 \\[5pt] 3 & -2 & -5 \\[5pt] -1 & 1 & 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 3 - 3 & 3 - (-2) & -1 - (-4) \\[5pt] -2 - 3 & -2 - (-2) & 1 - (-5) \\[5pt] -4 - (-1) & -5 - 1 & 2 - 2 \end{array}\right]}
{= \left[\begin{array}{ccc} 0 & 5 & 3 \\[5pt] -5 & 0 & 6 \\[5pt] -3 & -6 & 0 \end{array}\right]}
\dfrac12(A – A)
{= \dfrac12 × \left[\begin{array}{ccc} 0 & 5 & 3 \\[5pt] -5 & 0 & 6 \\[5pt] -3 & -6 & 0 \end{array}\right]}
{= \left[\begin{array}{ccc} \dfrac12 × 0 & \dfrac12 × 5 & \dfrac12 × 3 \\[10pt] \dfrac12 × -5 & \dfrac12 × 0 & \dfrac12 × 6 \\[10pt] \dfrac12 × -3 & \dfrac12 × -6 & \dfrac12 × 0 \end{array}\right]}
{= \left[\begin{array}{ccc} 0 & \dfrac52 & \dfrac32 \\[10pt] \dfrac{-5}{2} & 0 & 3 \\[10pt] \dfrac{-3}{2} & -3 & 0 \end{array}\right]}
Thus the given matrix A can be represented as the sum of a symmetric and skew symmetric matrices as
A = \dfrac12(A + A) + \dfrac12(A – A)
{\left[\begin{array}{ccc} 3 & 3 & -1 \\[5pt] -2 & -2 & 1 \\[5pt] -4 & -5 & 2 \end{array}\right] = \left[\begin{array}{ccc} 3 & \dfrac12 & \dfrac{-5}{2} \\[10pt] \dfrac12 & -2 & -2 \\[10pt] \dfrac{-5}{2} & -2 & 2 \end{array}\right] + \left[\begin{array}{ccc} 0 & \dfrac52 & \dfrac32 \\[10pt] \dfrac{-5}{2} & 0 & 3 \\[10pt] \dfrac{-3}{2} & -3 & 0 \end{array}\right]}
(iv) To express {\left[\begin{array}{cc} 1 & 5 \\[5pt] -1 & 2 \end{array}\right]} as the sum of a symmetric and a skew symmetric matrix:
Let the given metrix be A
So,
A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] -1 & 2 \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} 1 & -1 \\[5pt] 5 & 2 \end{array}\right]}
Now,
A + A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] -1 & 2 \end{array}\right] + \left[\begin{array}{cc} 1 & -1 \\[5pt] 5 & 2 \end{array}\right]}
{= \left[\begin{array}{cc} 1 + 1 & 5 + (-1) \\[5pt] -1 + 5 & 2 + 2 \end{array}\right]}
{= \left[\begin{array}{cc} 2 & 4 \\[5pt] 4 & 4 \end{array}\right]}
\dfrac12 × (A + A)
{= \dfrac12 × \left[\begin{array}{cc} 2 & 4 \\[5pt] 4 & 4 \end{array}\right]}
{= \left[\begin{array}{cc} \dfrac12 × 2 & \dfrac12 × 4 \\[10pt] \dfrac12 × 4 & \dfrac12 × 4 \end{array}\right]}
{= \left[\begin{array}{cc} 1 & 2 \\[5pt] 2 & 2 \end{array}\right]}
Similarly,
A – A
{= \left[\begin{array}{cc} 1 & 5 \\[5pt] -1 & 2 \end{array}\right] - \left[\begin{array}{cc} 1 & -1 \\[5pt] 5 & 2 \end{array}\right]}
{= \left[\begin{array}{cc} 1 - 1 & 5 - (-1) \\[5pt] -1 - 5 & 2 - 2 \end{array}\right]}
{= \left[\begin{array}{cc} 0 & 6 \\[5pt] -6 & 0 \end{array}\right]}
\dfrac12(A – A)
{= \dfrac12 × \left[\begin{array}{cc} 0 & 6 \\[5pt] -6 & 0 \end{array}\right]}
{= \left[\begin{array}{cc} \dfrac12 × 0 & \dfrac12 × 6 \\[10pt] \dfrac12 × -6 & \dfrac12 × 0 \end{array}\right]}
{= \left[\begin{array}{cc} 0 & 3 \\[5pt] -3 & 0 \end{array}\right]}
Thus the given matrix A can be represented as the sum of a symmetric and skew symmetric matrices as
A = \dfrac12(A + A) + \dfrac12(A – A)
{\left[\begin{array}{cc} 1 & 5 \\[5pt] 5 & 2 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\[5pt] 2 & 2 \end{array}\right] + \left[\begin{array}{cc} 0 & 3 \\[5pt] -3 & 0 \end{array}\right]}

Choose the correct answer in the Exercises 11 and 12.
11. If A, B are symmetric matrices of same order, then AB – BA is a
(A) Skew symmetric matrix ✔
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
As it is given that both A and B are symmetric matrices, it implies that
A = A
B = B
Now,
(AB – BA)
= (AB) – (BA) (∵ (A – B) = A – B)
= BA – AB (∵ (AB) = BA)
= BA – AB (∵ A = A and B = B)
= -(AB – BA)
As (AB – BA) = – (AB – BA), AB – BA is a skew symmetric matrix.
option A is the correct answer.
12. If {\text{A} = \left[\begin{array}{cc} \cos α & -\sin α \\[5pt] \sin α & \cos α \end{array}\right],} and A + A = I, then the value of α is
(A) \dfracπ6
(B) \dfracπ3
(C) π
(D) \dfrac{3π}{2}
Given that
A
{= \left[\begin{array}{cc} \cos α & -\sin α \\[5pt] \sin α & \cos α \end{array}\right]}
⇒ A
{= \left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right]}
Now,
A + A
{= \left[\begin{array}{cc} \cos α & -\sin α \\[5pt] \sin α & \cos α \end{array}\right] + \left[\begin{array}{cc} \cos α & \sin α \\[5pt] -\sin α & \cos α \end{array}\right]}
{= \left[\begin{array}{cc} \cos α + \cos α & -\sin α + \sin α \\[5pt] \sin α + (-\sin α) & \cos α + \cos α \end{array}\right]}
{= \left[\begin{array}{cc} 2\cos α & 0 \\[5pt] 0 & 2\cos α \end{array}\right]}
As it is given that A + A = I, we have
{\left[\begin{array}{cc} 2\cos α & 0 \\[5pt] 0 & 2\cos α \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\[5pt] 0 & 1 \end{array}\right]}
As the given matrices are equal, therefore, their corresponding elements must be equal. Comparing the corresponding elements, we get
{2\cos α}
= 1
{⇒ \cos α}
{= \dfrac12}
{= \cos \dfracπ3}
{α = \dfracπ3}
So, option B is the correct answer.