Miscellaneous Exercise on Chapter 2 Solutions

This page contains the NCERT mathematics class 12 chapter Inverse Trigonometric Functions Miscellaneous Exercise on Chapter 2 Solutions. You can find the numerical questions solutions for the chapter 2/Miscellaneous Exercise on Chapter 2 of NCERT class 12 mathematics in this page. So is the case if you are looking for NCERT class 12 Maths related topic Inverse Trigonometric Functions numerical questions solutions for Miscellaneous Exercise on Chapter 2. This page contains Miscellaneous Exercise on Chapter 2 solutions. If you’re looking for summary of the chapter or other exercise solutions, they’re available at
Miscellaneous Excercise on Chapter 2 Solutions
1. Find the value of the following: {\cos^{-1} \left(\cos \dfrac{13π}{6}\right)}
We know that {\cos^{-1} \cos x = x}, when the range of principal value branch of cos-1 is {[0, π]}.
However, we can’t apply this to the given function as the argument {\dfrac{13π}{6} ∉ [0, π]}
So, we need to simplify the argument so that it belongs to the range {[0, π]}
{\cos^{-1} \cos \dfrac{13π}{6}}
=
{\cos^{-1} \cos \left(2π + \dfrac{π}{6}\right)}
=
{\cos^{-1} \cos \dfrac{π}{6}}
=
\dfrac{π}{6}
2. Find the value of the following: {\tan^{-1} \left(\tan \dfrac{7π}{6}\right)}
We know that {\tan^{-1} \tan x = x}, when the range of principal value branch of tan-1 is {\left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}.
However, we can’t apply this to the given function as the argument {\dfrac{7π}{6} ∉ \left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}
So, we need to simplify the argument so that it belongs to the range {\left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}
{\tan^{-1} \tan \dfrac{7π}{6}}
=
{\tan^{-1} \tan \left(π + \dfrac{π}{6}\right)}
=
{\tan^{-1} \tan \dfrac{π}{6}}
=
\dfrac{π}{6}
2. Prove that {2\sin^{-1} \dfrac{3}{5} = \tan^{-1} \dfrac{24}{7}}
We know that {\tan^{-1} \tan x = x}, when the range of principal value branch of tan-1 is {\left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}.
However, we can’t apply this to the given function as the argument {\dfrac{7π}{6} ∉ \left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}
So, we need to simplify the argument so that it belongs to the range {\left(-\dfrac{π}{2}, \dfrac{π}{2}\right)}
{\tan^{-1} \tan \dfrac{7π}{6}}
=
{\tan^{-1} \tan \left(π + \dfrac{π}{6}\right)}
=
{\tan^{-1} \tan \dfrac{π}{6}}
=
\dfrac{π}{6}
3. Prove that {2\sin^{-1} \dfrac{3}{5} = \tan \dfrac{24}{7}}
Let’s first express sin^{-1} interms of tan^{-1} so that we can simplify it using the identity {2\tan^{-1} x = \tan^{-1} \dfrac{2x}{1 - x^2}}
Let
{\sin^{-1} \dfrac{3}{5}}
=
θ
{⇒ \sin θ}
=
\dfrac{3}{5}
{⇒ \cos θ}
=
\sqrt{1 - \sin^2 θ}
=
\sqrt{1 - \left(\dfrac{3}{5}\right)^2}
=
\sqrt{1 - \dfrac{9}{25}}
=
\sqrt{\dfrac{25 - 9}{25}}
=
\sqrt{\dfrac{16}{25}}
=
\dfrac{4}{5}
{⇒ \tan θ}
=
\dfrac{3}{4}
{⇒ θ}
=
{\tan^{-1} \dfrac{3}{4}}
{⇒ \sin^{-1} \dfrac{3}{5}}
=
{\tan^{-1} \dfrac{3}{4}}
Substituting, we have
L.H.S.
{= 2\sin^{-1} \dfrac{3}{5}}
{= 2\tan^{-1} \dfrac{3}{4}}
{= \tan^{-1} \left(\dfrac{2 × \dfrac{3}{4}}{1 - \left(\dfrac{3}{4}\right)^2}\right)} {\left(∵ 2\tan^{-1} x = \tan^{-1} \dfrac{2x}{1 - x^2}\right)}
{= \tan^{-1} \left(\dfrac{2 × \dfrac{3}{4}}{1 - \dfrac{9}{16}}\right)}
{= \tan^{-1} \left(\dfrac{2 × \dfrac{3}{4}}{\dfrac{16 - 9}{16}}\right)}
{= \tan^{-1} \left(\dfrac{2 × \dfrac{3}{4}}{\dfrac{7}{16}}\right)}
{= \tan^{-1} \left(2 × \dfrac{3}{4} × \dfrac{16}{7}\right)}
{= \tan^{-1} \dfrac{24}{7}}
= R.H.S.
4. Prove that {\sin^{-1} \dfrac{8}{17} + \sin^{-1} \dfrac{3}{5} = \tan \dfrac{77}{36}}
Let’s first express both the sin^{-1} functions on the L.H.S. interms of tan^{-1} so that we can simplify it using the identity {\tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}}
Let
{\sin^{-1} \dfrac{8}{17}}
=
α
{⇒ \sin α}
=
\dfrac{8}{17}
{⇒ \cos α}
=
\sqrt{1 - \sin^2 α}
=
\sqrt{1 - \left(\dfrac{8}{17}\right)^2}
=
\sqrt{1 - \dfrac{64}{289}}
=
\sqrt{\dfrac{289 - 64}{289}}
=
\sqrt{\dfrac{225}{289}}
=
\dfrac{15}{17}
{⇒ \tan α}
=
\dfrac{8}{15}
{⇒ α}
=
{\tan^{-1} \dfrac{8}{15}}
{⇒ \sin^{-1} \dfrac{8}{17}}
=
{\tan^{-1} \dfrac{8}{15}}
Similarly, let
{\sin^{-1} \dfrac{3}{5}}
=
β
{⇒ \sin β}
=
\dfrac{3}{5}
{⇒ \cos β}
=
\sqrt{1 - \sin^2 β}
=
\sqrt{1 - \left(\dfrac{3}{5}\right)^2}
=
\sqrt{1 - \dfrac{9}{25}}
=
\sqrt{\dfrac{25 - 9}{25}}
=
\sqrt{\dfrac{16}{25}}
=
\dfrac{4}{5}
{⇒ \tan β}
=
\dfrac{3}{4}
{⇒ β}
=
{\tan^{-1} \dfrac{3}{4}}
{⇒ \sin^{-1} \dfrac{3}{5}}
=
{\tan^{-1} \dfrac{3}{4}}
Substituting, we have
L.H.S.
{= \sin \dfrac{8}{17} + \sin^{-1} \dfrac{3}{5}}
{= \tan^{-1} \dfrac{8}{15} + \tan^{-1} \dfrac{3}{4}}
{= \tan^{-1} \left(\dfrac{\dfrac{8}{15} + \dfrac{3}{4}}{1 - \dfrac{8}{15} × \dfrac{3}{4}}\right)} {\left(∵ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}\right)}
{= \tan^{-1} \left(\dfrac{\dfrac{(8 × 4) + (15 × 3)}{15 × 4}}{\dfrac{(15 × 4) - (8 × 3)}{15 × 4}}\right)}
{= \tan^{-1} \left(\dfrac{32 + 45}{60 - 24}\right)}
{= \tan^{-1} \dfrac{77}{36}}
= R.H.S.
5. Prove that {\cos^{-1} \dfrac{4}{5} + \cos^{-1} \dfrac{12}{13} = \cos \dfrac{33}{65}}
As the right hand side is expressed interms of \cos^{-1}, let’s first find the values of the left hand side operands of the equation interms of \sin^{-1} also, so that we can use the identity
cos (A + B) = cos A cos B – sin A sin B
Let
A
=
{\cos^{-1} \dfrac{4}{5}}
⇒ cos A
=
\dfrac{4}{5}
⇒ sin A
=
\sqrt{1 - \cos^2 \text{A}}
=
\sqrt{1 - \left(\dfrac{4}{5}\right)^2}
=
\sqrt{1 - \dfrac{16}{25}}
=
\sqrt{\dfrac{25 - 16}{25}}
=
\sqrt{\dfrac{9}{25}}
=
\dfrac{3}{5}
Similarly, let
B
=
{\cos^{-1} \dfrac{12}{13}}
⇒ cos B
=
\dfrac{12}{13}
⇒ sin B
=
\sqrt{1 - \cos^2 \text{B}}
=
\sqrt{1 - \left(\dfrac{12}{13}\right)^2}
=
\sqrt{1 - \dfrac{144}{169}}
=
\sqrt{\dfrac{169 - 144}{169}}
=
\sqrt{\dfrac{25}{169}}
=
\dfrac{5}{13}
Now, let’s consider
cos (A + B)
=
cos A cos B – sin A sin B
=
{\dfrac{4}{5} × \dfrac{12}{13} - \dfrac{3}{5} × \dfrac{5}{13}}
=
{\dfrac{48}{65} - \dfrac{15}{65}}
=
{\dfrac{48 - 15}{65}}
=
{\dfrac{33}{65}}
So,
cos (A + B)
=
\dfrac{33}{65}
⇒ A + B
=
{\cos^{-1} \dfrac{33}{65}}
{\cos^{-1} \dfrac{4}{5} + \cos^{-1} \dfrac{12}{13} = \cos^{-1} \dfrac{33}{65}} (∵ as per our initial assumption {\text{A} = \cos^{-1} \dfrac{4}{5}} and {\left.\text{B} = \cos^{-1} \dfrac{12}{13}\right)}
Hence, proved.
6. Prove that {\cos^{-1} \dfrac{12}{13} + \sin^{-1} \dfrac{3}{5} = \sin^{-1} \dfrac{56}{65}}
As the right hand side is expressed interms of \sin^{-1}, let’s first find the values of the left hand side operands of the equation interms of \cos^{-1} as well as \cos^{-1}, so that we can use the identity
sin (A + B) = sin A cos B + cos A sin B
Let
A
=
{\cos^{-1} \dfrac{12}{13}}
⇒ cos A
=
\dfrac{12}{13}
⇒ sin A
=
\sqrt{1 - \cos^2 \text{A}}
=
\sqrt{1 - \left(\dfrac{12}{13}\right)^2}
=
\sqrt{1 - \dfrac{144}{169}}
=
\sqrt{\dfrac{169 - 144}{169}}
=
\sqrt{\dfrac{25}{169}}
=
\dfrac{5}{13}
Similarly, let
B
=
{\sin^{-1} \dfrac{3}{5}}
⇒ sin B
=
\dfrac{3}{5}
⇒ cos B
=
\sqrt{1 - \sin^2 \text{B}}
=
\sqrt{1 - \left(\dfrac{3}{5}\right)^2}
=
\sqrt{1 - \dfrac{9}{25}}
=
\sqrt{\dfrac{25 - 9}{25}}
=
\sqrt{\dfrac{16}{25}}
=
\dfrac{4}{5}
Now, let’s consider
sin (A + B)
=
sin A cos B + cos A sin B
=
{\dfrac{5}{13} × \dfrac{4}{5} + \dfrac{12}{13} × \dfrac{3}{5}}
=
{\dfrac{20}{65} + \dfrac{36}{65}}
=
{\dfrac{20 + 36}{65}}
=
{\dfrac{56}{65}}
So,
sin (A + B)
=
\dfrac{56}{65}
⇒ A + B
=
{\sin^{-1} \dfrac{56}{65}}
{\cos^{-1} \dfrac{12}{13} + \sin^{-1} \dfrac{3}{5} = \sin^{-1} \dfrac{56}{65}} (∵ as per our initial assumption {\text{A} = \cos^{-1} \dfrac{12}{13}} and {\left.\text{B} = \sin^{-1} \dfrac{3}{5}\right)}
Hence, proved.
7. Prove that {\tan^{-1} \dfrac{63}{16} = \sin^{-1} \dfrac{5}{13} + \cos^{-1} \dfrac{3}{5}}
Let’s solve this problem, by considering the right hand side of the equation. Let’s first express both the terms on the right hand side interms of \tan^{-1} so that we can use the identity
{\tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}}
Let
α
=
{\sin^{-1} \dfrac{5}{13}}
⇒ sin α
=
\dfrac{5}{13}
⇒ cos α
=
\sqrt{1 - \sin^2 α}
=
\sqrt{1 - \left(\dfrac{5}{13}\right)^2}
=
\sqrt{1 - \dfrac{25}{169}}
=
\sqrt{\dfrac{169 - 25}{169}}
=
\sqrt{\dfrac{144}{169}}
=
\dfrac{12}{13}
⇒ tan α
=
\dfrac{5}{12}
Similarly, let
β
=
{\cos^{-1} \dfrac{3}{5}}
⇒ cos β
=
\dfrac{3}{5}
⇒ sin β
=
\sqrt{1 - \cos^2 β}
=
\sqrt{1 - \left(\dfrac{3}{5}\right)^2}
=
\sqrt{1 - \dfrac{9}{25}}
=
\sqrt{\dfrac{25 - 9}{25}}
=
\sqrt{\dfrac{16}{25}}
=
\dfrac{4}{5}
⇒ tan β
=
\dfrac{4}{3}
Now, let’s consider
R.H.S.
=
{\sin^{-1} \dfrac{5}{13} + \cos^{-1} \dfrac{3}{5}}
=
{\tan^{-1} \dfrac{5}{12} + \tan^{-1} \dfrac{4}{3}}
=
{\tan^{-1} \left(\dfrac{\dfrac{5}{12} + \dfrac{4}{3}}{1 - \dfrac{5}{12} × \dfrac{4}{3}}\right)}
=
{\tan^{-1} \left(\dfrac{\dfrac{(5 × 3) + (12 × 4)}{12 × 3}}{\dfrac{(12 × 3) - (5 × 4)}{12 × 3}}\right)}
=
{\tan^{-1} \left(\dfrac{15 + 48}{36 - 20}\right)}
=
{\tan^{-1} \dfrac{63}{16}}
=
L.H.S.
Hence, proved.
8. Prove that {\tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7} + \tan^{-1} \dfrac{1}{3} + \tan^{-1} \dfrac{1}{8} = \dfrac{π}{4}}
To solve this problem let’s start with L.H.S. and take two terms as a group so that we can use the identity
{\tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}}
L.H.S.
{= \left(\tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7}\right) + \left(\tan^{-1} \dfrac{1}{3} + \tan^{-1} \dfrac{1}{8}\right)}
{= \tan^{-1} \left(\dfrac{\dfrac{1}{5} + \dfrac{1}{7}}{1 - \dfrac{1}{5} × \dfrac{1}{7}}\right) + \tan^{-1} \left(\dfrac{\dfrac{1}{3} + \dfrac{1}{8}}{1 - \dfrac{1}{3} × \dfrac{1}{8}}\right)}
{= \tan^{-1} \left(\dfrac{\dfrac{(1 × 7) + (5 × 1)}{5 × 7}}{\dfrac{(5 × 7) - (1 × 1)}{5 × 7}}\right) + \left(\tan^{-1} \dfrac{\dfrac{(1 × 8) + (3 × 1)}{3 × 8}}{\dfrac{(3 × 8) - (1 × 1)}{3 × 8}}\right)} {\left(∵ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}\right)}
{= \tan^{-1} \left(\dfrac{7 + 5}{35 - 1}\right) + \tan^{-1} \left(\dfrac{8 + 3}{24 - 1}\right)}
{= \tan^{-1} \dfrac{12}{34} + \tan^{-1} \dfrac{11}{23}}
{= \tan^{-1} \dfrac{6}{17} + \tan^{-1} \dfrac{11}{23}}
{= \tan^{-1} \left(\dfrac{\dfrac{6}{17} + \dfrac{11}{23}}{1 - \dfrac{6}{17} × \dfrac{11}{23}}\right)} {\left(∵ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \dfrac{x + y}{1 - xy}\right)}
{= \tan^{-1} \left(\dfrac{\dfrac{(6 × 23) + (17 × 11)}{17 × 23}}{\dfrac{(17 × 23) - (11 × 6)}{17 × 23}}\right)}
{= \tan^{-1} \left(\dfrac{138 + 187}{391 - 66}\right)}
{= \tan^{-1} \dfrac{325}{325}}
{= \tan^{-1} 1}
= \dfrac{π}{4}
= R.H.S.
Hence, proved.
9. Prove that {\tan^{-1} \sqrt{x} = \dfrac{1}{2} \cos^{-1} \dfrac{1 - x}{1 + x}}, {x ∈ [0, 1]}
We use the following identity to solve this problem.
{\cos^{-1} \dfrac{1 - x^2}{1 + x^2} = 2\tan^{-1} x}
R.H.S.
=
{\dfrac{1}{2}\cos^{-1} \dfrac{1 - x}{1 + x}}
=
{\dfrac{1}{2}\cos^{-1} \dfrac{1 - (\sqrt{x})^2}{1 + (\sqrt{x})^2}}
=
{\dfrac{1}{2} × 2\tan^{-1} \sqrt{x}} {(∵ \cos^{-1} \dfrac{1 - x^2}{1 + x^2} = 2\tan^{-1} x)}
=
{\tan^{-1} \sqrt{x}}
=
L.H.S.
Hence, proved.
10. Prove that {\cot^{-1} \left(\dfrac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right) = \dfrac{x}{2}}, {x ∈ \left(0, \dfrac{π}{4}\right)}
We know that {1 = \sin^2 \dfrac{x}{2} + \cos^2 \dfrac{x}{2}} and {\sin x = 2 \sin \dfrac{x}{2} \cos \dfrac{x}{2}}
Also, {x ∈ \left(0, \dfrac{π}{4}\right)}, {\dfrac{x}{2} ∈ \left(0, \dfrac{π}{8}\right)} and in the range {\left(0, \dfrac{π}{8}\right)}, we have {\cos \dfrac{x}{2} - \sin \dfrac{x}{2} \gt 0}
Substituting these, we will have
{1 + \sin x}
=
{\cos^2 \dfrac{x}{2} + \sin^2 \dfrac{x}{2} + 2 \cos \dfrac{x}{2} \sin \dfrac{x}{2}}
=
{\left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right)^2}
{∴ \sqrt{1 + \sin x}}
=
{\sqrt{\left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right)^2}}
=
{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}
Similarly,
{1 - \sin x}
=
{\cos^2 \dfrac{x}{2} + \sin^2 \dfrac{x}{2} - 2 \cos \dfrac{x}{2} \sin \dfrac{x}{2}}
=
{\left(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\right)^2}
{∴ \sqrt{1 - \sin x}}
=
{\sqrt{\left(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\right)^2}}
=
{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}
Substituting these values in the L.H.S., we have
L.H.S.
{= \cot^{-1} \left(\dfrac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right)}
{= \cot^{-1} \left(\dfrac{\left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right) + \left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right)}{\left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right) - \left(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\right)}\right)}
{= \cot^{-1} \left(\dfrac{\cos \dfrac{x}{2} + \sin \dfrac{x}{2} + \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}{\cos \dfrac{x}{2} + \sin \dfrac{x}{2} - \cos \dfrac{x}{2} + \sin \dfrac{x}{2}}\right)}
{= \cot^{-1} \left(\dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}}\right)}
{= \cot^{-1} \cot \dfrac{x}{2}}
= \dfrac{x}{2}
= R.H.S.
Hence, proved.
11. Prove that {\tan^{-1} \left(\dfrac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}\right) = \dfrac{π}{4} - \dfrac{1}{2}\cos^{-1} x}, {-\dfrac{1}{\sqrt{2}} \le x \le 1} [Hint: Put {x = \cos 2θ}]
Let {x = \cos 2θ}
{⇒ \cos^{-1} x = 2θ}
{⇒ θ = \dfrac{1}{2}\cos^{-1} x}
Substituting into the terms on the L.H.S., we have
{1 + x}
=
{1 + \cos 2θ}
=
{2\cos^2 θ}
{⇒ \sqrt{(1 + x)}}
=
{\sqrt{2\cos^2 θ}}
=
{\sqrt{2}\cos θ}
{1 - x}
=
{1 - \cos 2θ}
=
{2\sin^2 θ}
{⇒ \sqrt{(1 - x)}}
=
{\sqrt{2\sin^2 θ}}
=
{\sqrt{2}\sin θ}
Substituting these values on the L.H.S. of the given equation, we have
L.H.S.
{= \tan^{-1} \left(\dfrac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}\right)}
{= \tan^{-1} \left(\dfrac{\sqrt{2}\cos θ - \sqrt{2}\sin θ}{\sqrt{2}\cos θ + \sqrt{2}\sin θ}\right)}
Dividing each term in the numerator and denominator with {\sqrt{2}\cos θ}), we have
L.H.S.
{= \tan^{-1} \left(\dfrac{\dfrac{\sqrt{2}\cos θ}{\sqrt{2}\cos θ} - \dfrac{\sqrt{2}\sin θ}{\sqrt{2}\cos θ}}{\dfrac{\sqrt{2}\cos θ}{\sqrt{2}\cos θ} + \dfrac{\sqrt{2}\sin θ}{\sqrt{2}\cos θ}}\right)}
{= \tan^{-1} \left(\dfrac{1 - \tan θ}{1 + \tan θ}\right)}
{= \tan^{-1} \left(\dfrac{\tan \dfrac{π}{4} - \tan θ}{\tan \dfrac{π}{4} + \tan θ}\right)} {\left(∵ 1 = \tan \dfrac{π}{4}\right)}
{= \tan^{-1} \tan \left(\dfrac{π}{4} - θ\right)} {\left(∵ \dfrac{\tan x - \tan y}{1 - \tan x \tan y} = \tan (x - y)\right)}
{= \dfrac{π}{4} - θ}
= {\dfrac{π}{4} - \dfrac{1}{2}\cos^{-1} x} (∵ as per our initial assumption {θ = \dfrac{1}{2}\cos^{-1} x)}
= R.H.S.
12. Prove that {\dfrac{9π}{8} - \dfrac{9}{4}\sin^{-1} \dfrac{1}{3} = \dfrac{9}{4} \sin^{-1} \dfrac{2\sqrt{2}}{3}}
We know that {\sin^{-1} x + \cos^{-1} x = \dfrac{π}{2}}
So, we'll use this in the problem as {\dfrac{π}{2} = \sin^{-1} \dfrac{1}{3} + \cos^{-1} \dfrac{1}{3}}
Now,
L.H.S.
=
{\dfrac{9π}{8} - \dfrac{9}{4}\sin^{-1} \dfrac{1}{3}}
=
{\dfrac{9}{4}\left(\dfrac{π}{2} - \sin^{-1} \dfrac{1}{3}\right)}
=
{\dfrac{9}{4}\cos^{-1} \dfrac{1}{3}} \left(∵ \sin^{-1} x + \cos^{-1} x = \dfrac{π}{2}\right)
=
{\dfrac{9}{4}\sin^{-1} \sqrt{1 - \left(\dfrac{1}{3}\right)^2}} {\left(∵ \cos^{-1} x = \sin^{-1} \sqrt{\left(1 - x^2\right)}\right)}
=
{\dfrac{9}{4}\sin^{-1} \sqrt{1 - \dfrac{1}{9}}}
=
{\dfrac{9}{4}\sin^{-1} \sqrt{\dfrac{9 - 1}{9}}}
=
{\dfrac{9}{4}\sin^{-1} \sqrt{\dfrac{8}{9}}}
=
{\dfrac{9}{4}\sin^{-1} \dfrac{2\sqrt{2}}{3}}
=
R.H.S.
13. Solve the following equations: {2\tan^{-1} (\cos x) = \tan^{-1} (2 \cosec x)}
The given equation is
{2\tan^{-1} (\cos x) = \tan^{-1} (2 \cosec x)}
{⇒ \tan^{-1} \dfrac{2\cos x}{1 - \cos^2 x} = \tan^{-1} 2 × \dfrac{1}{\sin x}} {\left(∵ 2\tan^{-1} x = \tan^{-1} \dfrac{2x}{1 - x^2}\right)}
{⇒ \dfrac{2\cos x}{\sin^2 x} = 2 × \dfrac{1}{\sin x}}
{⇒ \dfrac{\cos x}{\sin x} = 1}
{⇒ \cot x = 1}
{x = \dfrac{π}{4}} {\left(∵ \cot \dfrac{π}{4} = 1\right)}
14. Solve the following equations: {\tan^{-1} \dfrac{1 - x}{1 + x} = \dfrac{1}{2}\tan^{-1} x}
We know that {\tan^{-1} \dfrac{x - y}{x + y} = \tan^{-1} x - \tan^{-1} y}
We'll apply this into the given equation.
The given equation is
{\tan^{-1} \dfrac{1 - x}{1 + x} = \dfrac{1}{2}\tan^{-1} x}
{⇒ \tan^{-1} 1 - \tan^{-1} x = \dfrac{1}{2}\tan^{-1} x} {\left(∵ \tan^{-1} \dfrac{x + y}{x - y} = \tan^{-1} x - \tan^{-1} x\right)}
{⇒ \dfrac{π}{4} - \tan^{-1} x = \dfrac{1}{2}\tan^{-1} x} {\left(∵ \tan^{-1} 1 = \dfrac{π}{4}\right)}
{⇒ \dfrac{π}{4} = \tan^{-1} x + \dfrac{1}{2}\tan^{-1} x}
{⇒ \dfrac{π}{4} = \dfrac{3}{2}\tan^{-1} x}
{⇒ \dfrac{π}{4} × \dfrac{2}{3} = \tan^{-1} x}
{⇒ \tan^{-1} x = \dfrac{π}{4} × \dfrac{2}{3}}
{⇒ \tan^{-1} x = \dfrac{π}{6}}
{⇒ x = \tan \dfrac{π}{6}}
{x = \dfrac{1}{\sqrt{3}}}
15. {\sin \left(\tan^{-1} x\right)}, {|x| \lt 1} is equal to
(A) {\dfrac{x}{\sqrt{1 - x^2}}}
(B) {\dfrac{1}{\sqrt{1 - x^2}}}
(C) {\dfrac{1}{\sqrt{1 + x^2}}}
(D) {\dfrac{x}{\sqrt{1 + x^2}}}

We know that
{\tan^{-1} x = \sin^{-1} \dfrac{x}{\sqrt{1 + x^2}}}
Substituting, we get
{\sin \left(\tan^{-1} x\right)}
=
{\sin \left(\sin^{-1} \dfrac{x}{\sqrt{1 + x^2}}\right)}
=
{\dfrac{x}{\sqrt{1 + x^2}}} {\left(∵ \sin^{-1} \sin x = x\right)}
So, option D is the correct answer.
16. {\sin^{-1} (1 - x) - 2 \sin^{-1} x = \dfrac{π}{2}}, then x is equal to
(A) 0, \dfrac{1}{2}
(B) 1, {\dfrac{1}{2}}
(C) 0 ✔
(D) \dfrac{1}{2}

Let {\sin^{-1} x = θ}
{⇒ x = \sin θ}
Now {\cos 2θ}
=
{1 - 2\sin^2 θ}
=
{1 - 2x^2}
⇒ 2θ
=
{\cos^{-1} (1 - 2x^2)}
{⇒ 2\sin^{-1} x}
=
{\cos^{-1} (1 - 2x^2)}
We'll apply this into the given equation to solve it.
Now {\cos 2θ = 1 - 2\sin^2 θ}
The given equation is
{\sin^{-1} (1 - x) - 2 \sin^{-1} x = \dfrac{π}{2}}
{⇒ \sin^{-1} (1 - x) = \dfrac{π}{2} + 2 \sin^{-1} x}
{⇒ 1 - x = \sin \left(\dfrac{π}{2} + 2 \sin^{-1} x\right)}
{⇒ 1 - x = \cos \left(2 \sin^{-1} x\right)}
{⇒ 1 - x = \cos \cos^{-1} \left(1 - 2x^2\right)} {\left(∵ 2\sin^{-1} x = \cos^{-1} \left(1 - 2x^2\right)\right)}
{⇒ 1 - x = 1 - 2x^2}
{⇒ 2x^2 - x = 0}
{⇒ x(2x - 1) = 0}
{⇒ x = 0 \text{ or } 2x - 1 = 0}
{⇒ x = 0 \text{ or } x = \dfrac{1}{2}}
However, when {x = \dfrac{1}{2}}, the given equation is not satisfied.
So, {x = 0}
So, option C is the corect answer
17. {\tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{x - y}{x + y}} is equal to
(A) \dfrac{π}{2}
(B) \dfrac{π}{3}
(C) \dfrac{π}{4}
(D) \dfrac{3π}{4}

Dividing the numerator and denominator of the second term's argument in the given function with {y,} we have
{\tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{x - y}{x + y}}
{= \tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{\dfrac{x}{y} - \dfrac{y}{y}}{\dfrac{x}{y} + \dfrac{y}{y}}}
{= \tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{\dfrac{x}{y} - 1}{\dfrac{x}{y} + 1}}
{= \tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{\dfrac{x}{y} - 1}{1 + 1 × \dfrac{x}{y}}}
{= \tan^{-1} \dfrac{x}{y} - \left(\tan^{-1} \dfrac{x}{y} - \tan^{-1} 1\right)} {\left(∵ \tan^{-1} \dfrac{x - y}{1 + xy} = \tan^{-1} x - \tan^{-1} y\right)}
{= \tan^{-1} \dfrac{x}{y} - \tan^{-1} \dfrac{x}{y} + \tan^{-1} 1}
{= \tan^{-1} 1}
= {\dfrac{π}{4}} {\left(∵ 1 = \tan \dfrac{π}{4}\right)}
So, option C is the correct answer.